Strong convergence of additive Multidimensional Continued Fraction algorithms
نویسندگان
چکیده
منابع مشابه
On Almost Everywhere Strong Convergence of Multidimensional Continued Fraction Algorithms
We describe a strategy which allows one to produce computer assisted proofs of almost everywhere strong convergence of Jacobi-Perron type algorithms in arbitrary dimension. Numerical work is carried out in dimension three to illustrate our method. To the best of our knowledge this is the rst result on almost everywhere strong convergence in dimension greater than two.
متن کاملSome aspects of multidimensional continued fraction algorithms
Many kinds of algorithms of continued fraction expansions of dimension s(≥ 2) have been studied starting with K.G.J.Jacobi(1804-1851), for example, see [14]. For s = 1, we know Lagrange’s theorem related to periodic continued fractions and real quadratic irrationals. But, even for real cubic irrationalities, there appeared no suitable algorithms (of dimension 2). In this section, we roughly exp...
متن کاملOn some symmetric multidimensional continued fraction algorithms
We compute explicitly the density of the invariant measure for the Reverse algorithm which is absolutely continuous with respect to Lebesgue measure, using a method proposed by Arnoux and Nogueira. We also apply the same method on the unsorted version of Brun algorithm and Cassaigne algorithm. We illustrate some experimentations on the domain of the natural extension of those algorithms. For so...
متن کاملLyapunov Exponents for Non-classical Multidimensional Continued Fraction Algorithms
We introduce a simple geometrical two-dimensional continued fraction algorithm inspired from dynamical renormalization. We prove that the algorithm is weakly convergent, and that the associated transformation admits an ergodic absolutely continuous invariant probability measure. Following Lagarias, its Lyapunov exponents are related to the approximation exponents which measure the diophantine q...
متن کاملThe Szekeres Multidimensional Continued Fraction
In his paper "Multidimensional continued fractions" {Ann. Univ. Sei. Budapest. EOtvOs Sect. Math., y. 13, 1970, pp. 113-140), G. Szekeres introduced a new higher dimensional analogue of the ordinary continued fraction expansion of a single real number. The Szekeres algorithm associates with each fc-tuple (a»,..., ak) of real numbers (satisfying 0 < a< 1) a sequence bx, b2,... of positive intege...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2006
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa121-1-1